7 research outputs found

    Comment: Citation Statistics

    Full text link
    We discuss the paper "Citation Statistics" by the Joint Committee on Quantitative Assessment of Research [arXiv:0910.3529]. In particular, we focus on a necessary feature of "good" measures for ranking scientific authors: that good measures must able to accurately distinguish between authors.Comment: Published in at http://dx.doi.org/10.1214/09-STS285B the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Hjernen i computeren: Computeren i hjernen

    Get PDF

    A quantitative analysis of measures of quality in science

    Get PDF
    Condensing the work of any academic scientist into a one-dimensional measure of scientific quality is a difficult problem. Here, we employ Bayesian statistics to analyze several different measures of quality. Specifically, we determine each measure's ability to discriminate between scientific authors. Using scaling arguments, we demonstrate that the best of these measures require approximately 50 papers to draw conclusions regarding long term scientific performance with usefully small statistical uncertainties. Further, the approach described here permits the value-free (i.e., statistical) comparison of scientists working in distinct areas of science.Comment: 11 pages, 8 figures, 4 table

    Dynamics, correlations and phases of the micromaser

    Get PDF
    The micromaser possesses a variety of dynamical phase transitions parametrized by the flux of atoms and the time-of-flight of the atom within the cavity. We discuss how these phases may be revealed to an observer outside the cavity using the long-time correlation length in the atomic beam. Some of the phase transitions are not reflected in the average excitation level of the outgoing atom, which is the commonly used observable. The correlation length is directly related to the leading eigenvalue of the time evolution operator, which we study in order to elucidate the phase structure. We find that as a function of the time-of-flight the transition from the thermal to the maser phase is characterized by a sharp peak in the correlation length. For longer times-of-flight there is a transition to a phase where the correlation length grows exponentially with the flux. We present a detailed numerical and analytical treatment of the different phases and discuss the physics behind them.Comment: 60 pages, 18 figure files, Latex + \special{} for the figures, (some redundant figures are eliminated and others are changed
    corecore